

Safety Systems
USPAS
June 2004

Outline

- * Logistics
- Course Overview
- Course Outline
- * Accelerator Basics

Logistics

Class hours

Morning 9-10:45

Break 10:45-11:00

Computer 11-12 (Tue-Thurs)

Lunch 12-1:30

Afternoon 1:30-4:30

Material

"Reliability, Maintainability, and Risk", David Smith Handouts

Homework

Selected exercises from Smith Handouts

Course Outline

Intent:

It is the intent of this class to communicate a basic knowledge about safety systems used at accelerator labs. One should leave the class knowing the basic steps required for the development of a safety system and the system plan. The class is intended not only to teach basic technical skills such as reliability evaluation but also a greater context in which safety systems are developed. To that end, the class includes a significant amount of material on system safety programs, accelerator regulatory requirements, and what is considered good practice among accelerator management and safety professionals.

Scope

This class is intended to address hazards associated with operation of particle accelerator systems. It does not specifically address normal industrial hazards common to all workplaces.

Foundations of Good Practice

Context

- ❖ One of the most important concepts to understand in working with safety systems is context.
 - ❖ Physical Environment
 - * Regulatory Environment
 - * Risk Environment
 - ❖ Management Structure
 - * Resource Environment
- * Without understanding the proper context of a safety system, tacit assumptions are made that could lead to undesired system behavior or worse.

Introduction to System Safety in Research Accelerators

Accelerators

1934 Patent for the cyclotron awarded to E.O. Lawrence

Feb. 20, 1934.

E. O. LAWRENCE

1,948,384

METHOD AND APPARATUS FOR THE ACCELERATION OF IONS

Filed Jan. 26, 1932

2 Sheets-Sheet 1

Accelerator Basics

* Accelerators are used to transfer kinetic energy to charged particles. $\Delta E = qV$

where $\Delta E = E_T - E_{rest}$

* The energetic particles are used to transfer energy and momentum to nuclei in order to generate a myriad of ionizing radiation byproducts.

The eV

Energy equivalent to that gained by an electron passing through a potential difference of one volt.

1eV =
$$1.602 \times 10^{-19}$$
 Joule ($\frac{kg \cdot m^2}{s^2}$)
= 1.602×10^{-12} ergs
= 4.451×10^{-26} kilowatt-hour

Electrostatic Acceleration

1932 photo of Cockcroft-Walton Accelerator.

Energy Gain as v⇒c

$$E = mc^{2}$$

$$m = \frac{E}{\sqrt{1 - \left(\frac{v}{c}\right)^{2}}}$$

$$\beta = \frac{v}{c}$$

$$\gamma = \frac{1}{\sqrt{1 - \beta^{2}}}$$

$$E = \gamma mc^{2}$$

Types of Accelerators

Use	Collider	Fixed Target	Synchrotron Light	Free Electron Laser
Type				Lasei
Cyclotron				
Betatron				
Synchrotron				
Linac				
Recirculating Linac				

World wide inventory of accelerators, in total 15,000. The data have been collected by W. Scarf and W. Wiesczycka (See U. Amaldi Europhysics News, June 31, 2000)

Category	Number
Ion implanters and surface modifications	7,000
Accelerators in industry	1,500
Accelerators in non-nuclear research	1,000
Radiotherapy	5,000
Medical isotopes production	200
Hadron therapy	20
Synchrotron radiation sources	70
Nuclear and particle physics research	110

From Sven Kullander, Nobel e-museum, First published August 28, 2001 http://www.nobel.se/physics/articles/kullander/USPAS

Accelerated Particles

Particle	Symbol	Charge	Rest Mass, MeV	Spin
Electron/ Positron	e^-,e^+	-1,+1	0.511	1/2
Proton/Anit- Proton	P, \overline{P}	+1,-1	938	1/2
Heavy Ion	Atomic Symbol, Number	Varied	~939*Atomic number	1/2
Muon (not yet built)	μ	-1	106	1/2

Secondary Particle Beams

Particle	Symbol	
Photon	γ	FEL, Synchrotron Light, x -> far gamma
Neutron	n	Slow- irradiation Fast – therapy, spillation
neutrino	ν	Standard model
muon	μ+/-	Standard model
π-meson	$\pi^{+/-}$	Muon source, Therapy

© K Mahoney/S. Prior 2002-2004

Common Accelerator Facility Units

- Source
 - Generates primary beam
 - Establishes timing structure
 - keV-MeV Energies
- Linear Accelerator (linac)
 - Many accelerator sections
 - Few magnetic steering sections
 - **♦** keV 50GeV+
- Ring Accelerator
 - Few acceleration sections
 - Many magnetic steering sections
 - ❖ MeV-1TeV+

- Accumulator/Storage Ring
 - * Accumulation of exotic particles
 - **❖** Particle storage
- Interaction Region
 - Target area
 - Collider area

Ring vs. linac

SLAC

Fermi

CERN

CERN aerial photo showing 27 km tunnel.

APS

Advanced Photon
Source, Aurora, IL.
Positron beam
generates X-ray light
as it circulates around
the beam line.

Basic Accelerator Systems

- **⋄** Source
- * Acceleration
- Beam Containment and Transport
- Beam Interaction and Dissipation

CERN 750keV Proton Source

JLab 100keV Electron Source

RF Acceleration

RF Acceleration

Particle

Bunch

- On Accelerating Crest
 - ❖ Max Acceleration
- Off Crest
 - * Different head-tail acceleration but still net acceleration
 - * Bunching
 - Focusing
- Zero Crossing
 - * Bunching
 - Make up Lost Energy
- On Decelerating Crest
 - * Energy Recovery
 © K Mahoney/S. Prior

2002-2004

USPAS June, 2004

RHIC RF Cavities

© K Maho 2002-2004

June, 2004

Field Emission and Multipacting

- Electrons are stripped off of cavity walls and accelerated within the cavity
- Can be accelerated into beam line (Dark Current)
- Source of radiation without beam

Field emission

Electrons emitted from surface irregularity

Multipacting

Electrons stripped off cavity material and impact adjacent walls in resonance with RF frequency

Beam Transport

Jefferson Lab magnetic beam transport system showing dipoles (blue), quadrapole(red), and sextupole (orange) magnets.

Supporting Accelerator Systems

- Timing and Control
- Diagnostic
- Shielding
- Safety Systems
 - Access Control
 - Safety Interlock Systems
 - ❖ Alarm and Warning Systems

What's Ahead?

- High Power Photon Sources
- * TESLA
- Neutrino factory
- * CLIC
- ❖ ELIC/eRHIC
- * LHC
- * NLC
- Plasma/Laser Fusion
- ❖ JLab 12GeV
- Meson Scattering
- * RIA
- * Muon Collider

Special Safety Concerns for

Accelerators

- Beam Production (Source)
 - Prompt ionizing radiation
 - * Beam
 - ❖ Field Emission
 - Dark Current
 - * Beam scraping
 - Laser systems, e.g photocathode
 - High Voltage
- * Acceleration
 - Prompt ionizing radiation
 - Dark Current
 - Multipacting
 - ❖ Field Emission
 - ❖ Beam Scraping
 - * Electromagnetic Radiation
 - High Voltage
 - Cryogenic Vessel

- Beam Transport
 - Prompt ionizing radiation
 - Beam Scraping
 - High Voltage
 - High Current
 - Laser Systems
 - Cryogenic Systems
 - Vacuum implosion
- Beam Interaction Area
 - Prompt ionizing radiation
 - High Voltage
 - High Current
 - Cryogenic Systems
 - Explosive Gas
 - Lasers
 - Vacuum implosion

© K Mahoney/S. Prior 2002-2004

Context

- ❖ In order to implement effective safety systems for accelerators, one must understand the context in which the system operates.
- * This includes statutory, regulatory, and site specific requirements.
- * It also includes a basic understanding of the equipment interfaced to the system.

- Ill defined requirements lead to:
 - Outright failure
 - Work arounds that are not as thoroughly evaluated as the original design
 - "complex" solutions; especially when using computer based systems
- * One of the major causes of ill defined requirements is misinterpretation or misuse (or no reference to) regulatory requirements.